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AN INVERSE LAPLACE TRANSFORMATION FOR SOLVING HEAT-CONDUCTION PROBLEMS 

WITH DISCONTINUOUS BOUNDARY CONDITIONS OF THE SECOND KIND 

V. P. Kozlov and V. S. Adamchik UDC 5117.946:536.24 

An inverse Laplace transformation is found for a class of functions encountered 
in heat-conduction problems with discontinuous boundary conditions. 

In the solution of multidimensional axisymmetric nonstationary heat-conduction problems 
[1-3] for a system of two semibounded bodies with different thermophysical characteristics 
(TPC) in thermal contact in a plane wherein bounded (local) surface heat sources are operative 
with arbitrarily specified laws of heat flow density measurement in the corresponding domains, 
Laplace transform representations of the following form are encountered: 

L v ( s ) = L v I s l P ~ ,  P2, P3, v) 1 1-- kiexp(--p~-i/~ 
k~, k~, k3 = s v 1- -k2exp(- -p~-Vs)- -k3exp(- -p3- l / s )  ' 

v, pi>O,  i----1, 2, 3. 
(i) 
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In the present paper we examine the problem of inverting the transform (i). The result- 
ing original function is represented in the form of a nonsingular integral expressible in 
terms of a dual series in degenerate hypergeometric functions [4]. 

LEMMA. Let Pi > O, i = i, 3, and k2ka ~ O. Then for lk2 + ksl < i, or for Ik2 + kal = 
I, but with k I = i, the modulus of the function 

(s) : 1 -- k~ exp (--p~]/'7) ( 2 ) 
1 - -  ks exp ( - -  p23 /~  - -  k3 exp(--pa]/~) 

i s  bounded  i n  t h e  a n g l e  S = ~ : [ a r g s  [ < ~}. 

Proof. We determine the conditions under which the denominator of the function (2) does 
not vanish in the angle S. It is obvious that equating the denominator to zero is equivalent 
to the system 

ks exp ( - -  p~Re]/s) cos (p2 Ira] ' /s)  + k, exp (--  p3t~e]/s) cos (p3| m ] / s )  = 1, 

k2 exp (-- p2Re]/s) sin (p2Iml / s )  + G exp (-- p3Re]/s) sin (p31 m l / s )  = O, 

whence we have 

k ~  - k ~ exp (--2p~Re]/s) + ~ exp (--  2psRe]/s)  + 2k2k3 X 

• exp [--  (P2 q- P3) Re] / s ]  cos [(P2 --  P3) I m ] / s ]  = 1. 

We estimate the left side of the last equation. It is not difficult to see that the value 
of the left side of this equation satisfies the condition s 2 + ka) 2, the equality sign be- 
ing attained only for s = O. Consequently, if [k2 + k31 < i, the denominator of the function 
(2) has no zeros in the angle S. We show that even when [k 2 + k31 = i, there are no zeros. 
For this, it is obviously sufficient to prove the existence of the limit of ~(s) as s + O. 

We have 

lira q~ (s) = lira 
s~O s~O 
s~S seS 

1 - - k i  

1 - -  ks  - -  k3 

le~pt 
k~p~ q- k3p3 

1 - -k~+ k~p,-l/s+ O(s) 
1 -- I G -- k3 + (le2p2 + k3p3)-l/s-]- 0 (s) 

, i f  kz ~ -  k 3 =/= 1, 

, i f  k~ q -  k3 = k l  = 1. 

It remains to prove the boundedness of the modulus of r as s § ~ along the boundary of 
the angle S, i.e., #s--= Rexp [i(g/2 - E)], ~ > O: 

lim ~ (s) ---- lira 1 -- exp {-- ptR exp [i (~/2 -- e)]} = 1. 

seos ~>o 1--k 2 exp {--p~R exp [i(~/2--sl}--k3exp --p3 P, i . ~  

In accordance with the Phragmen-Lindelof principle, it follows that r is bounded in the 
angle S. Thus the lemma is proved. 

We now go to the immediate inversion of the function (i): 

1 ~ + i 6  
Lv (*) = L -~ [Lv (s)]= l i r a - -  j" 

~ -  2~i 0--i6 

exp (s~) Lv (s) ds, a > O. 

Under the conditions stated in the lemma, the integrand function is single-valued and analytic 
in the angle S. Consequently, by the Cauchy theorem (Fig. i), 
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Fig. i. Contour for calculating the inverse Laplace transform 
of the function (I). 

Fig. 2. Idealized physical model for the contact of semibounded 
bodies with a thin circular heat source. 
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k d e t a i l e d  e v a l u a t i o n  o f  t h e s e  i n t e g r a l s  i s  r e q u i r e d ;  an e v a l u a t i o n  o f  t h e  s e c o n d  h a s  
already been given in Sec. 11.2 of [5]. In view of this, we give only the main features in 
the inversion of the function (i). 

It follows from the above lemma and the Jordan lemma that the integrals along the large 
arcs AC and FB tend toward zero. The integral along the small circle DE tends toward a con- 
stant: 

A = 

1 - -  k l  

1 - -  k2 - -  k3 

Pl 
k2p~ + ksp8 

0,  

, if k 2 + k s = / = l ,  "~= 1, 

, i f  k2 + k3 = k l  = 1, ~ - -  1, 

if 0 < v ~  1. 

In evaluating the integral along the segments CD and EF, it is necessary to take into account 
that along the lower edge of the cut the function s ~ takes on the value Islgexp(-~i), while 
on the upper edge it takes on the value IslVexp(~i). Thus, we can represent the original 
function (I) in the form 

L v ( ~ ) = L v  (~]P~' P2, P3, ~ ) = A +  2 .i exp(--~x~')x 2v-1 • 
k~, k2, k3 ~ 0 

(3) + [sin ~ + k~ sin (p~x - -  nv) + ka sin (pax - -  ~v) - -  kl  sin (p lx  + av) + 

-~- klk 2 sin (plx - -  p2x -I- nv)  -1- kxk3 sin (ptx  - -  pax + av)]/[ 1 + 

@ k 2 I 2 + k~ - -  2k.2 cos p2x 2k3 cos psx + 2k2k3 cos (p2x - -  p3x)l dx. 

We represent the function Lv(x) in terms of a dual series in degenerate hypergeometric 
functions. To do this we split up the integral on the right side of Eq. (3) into two integrals, 
gathering separately the terms for sin~v and cos ~v, and we then differentiate the left and 
right sides of Eq. (3) with respect to x. Justification for the differentiation of the integral 
with respect to the parameter x follows from the fact that the integrals obtained thereby con- 
verge uniformly with respect to x on an arbitrary finite interval for 0 < v ~ i: 
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O 

& 
- -  L v  (T) - 

sin av  (x 3-~v exp ( - -  ~x'-) . 1 - -  k~ exp (--ip~x) 
a ~ ~ I - -  k2 exp ( - -  ip~x) - -  k a exp ( - -  ipax) 

1 - -  k ,  exp (ipxx) I dx - -  
@ 1 - -  kz exp (ip.,.x) - -  k a exp (ipax) 

cos_av .t' xa-~"  exp ( - -  ~x 2) 1 - -  h~ exp (ip,x) 
a o " 1 - -  k~ exp (ip.~x) - -  ke exp (ipax) 

__ 1 -- k~ exp ( - -  ip~x) ] dx. 
1 - -  k= exp ( - -  ip~x) - -  ka exp ( - -  ipax) J 

d_ 

We now expand the function [I - k 2 exp (• - k 3 exp (• -I, subject to the condition 
i > Ik=exp(iip=x) + k 3exp(• I = #ke = + k32 + 2k2k 3cos (p=x - pax) ~ [k2 - k3[, in a 
dual series with respect to x on an arbitrary finite interval for 0 < v 5 i, we interchange 
the order of integration and summation. We note here that it is not possible to expand the 
integrand function on the right side of Eq. (3) since the resulting dual series, together 
with exp (-~x2)x I-2~ has a point of nonuniform convergence at x = O. We have 

O Lv(~)  -2 2 ~ k m h " - ~ ( n ) {  i 0~ a ,,~ 2 a s i n a v  x a - 2 v e x p ( - T x  ~)• 
n~O m=O 1~ 0 

• [cos x a ~  - -  kl  cos x a ~ l  dx + cos av  ~ x a-2" exp ( - -  ~x ~) [sin x a ~  - -  k~ sin x a = d  dx~ , 
o 

w h e r e  amn = pe  TM + p s ( n  - m ) .  

We integrate the left and right sides of the latter equation with respect to �9 and then 
evaluate the resulting integrals: 

Lv(~)  = Lv  ( z  p~' P2, Pa, v .%, kmk~_,~ n 
k l  ' h2  ' k3 = ,~a  2 3 

n~O m~O /?7" 

�9 ;~zrl , @ 

--- k~ lF1 l - - v ;  2 ' 4"c P (v 1 
2 ) ~a/2-,, 

1 ~ 
Y ( v ) ' d - ~  " ~Y~ I - - v ;  - - ;  .... - - -  

2 4~ ( 4 )  

-- am n lF1 -- V; -- , , 

3 a2 1 
2 4"r ,, 

where zFz(a; b; x) is a degenerate hypergeometric function [4];a mn = p2 m + pH(n - m), 

�9 {i, 0<v<l, 
s g n ( 1 - - v )  O, v =  1. 

As is evident, all the operations made above are valid for 0 < v ~ i. However, the in- 
verse Laplace transform of the function (i) exists for arbitrary v > 0. Therefore, to invert 
the transform (I) for v > I, it is necessary to use the convolution theorem [5, 4]. Thus, 
we have the following theorem. 

THEOREM. The inverse Laplace transform of function (i) is the function Lv .(~ Ip1'kl, k2, p~' kaPa' v), , 

where Pi > 0, i = i, 3, 0 < v g i, which may be expressed in the form of the integral (3) if 
kgk~ ~ 0 and Ik2 + k31 < i, or if Ik2 + k31 = i, but with k z = i, or in the form of the dual 
series (4) subject to the supplementary condition Ik2 - k31 < i. 

We give several examples of the use of the inverse Laplace transform of the function 
(i) for solving a specific heat-conduction problem. 

Assume that we have two half-spaces (Fig. 2) with different TPC, which are in ideal ther- 
mal contact with a thin circular heat source of constant power q0(~) = q0 = W0/~r02, where 
r0 is the radius of action of the source. The initial temperature distribution at all points 
of the system of bodies considered is uniform and equal to To = const. Outside the circle 
(r > r 0) in the plane (z = O) of contact of the given bodies the temperature gradient along 

607 



the normal to the boundary separating the bodies is absent. We are required to determine: 
i) the dependence of the nonstationary specific thermal flows qx(T) or qe(~) on the axis 
r = 0, advancing into the corresponding half-space due to the heating of the given system 
of bodies by a bounded heat source of constant power; 2) the dependence of the nonstationary 
temperature at the central point (r = z = 0) of the circular heat source. 

The value of the transform qx(s) for the specific heat flow, directed along the Izl axis 
(r = 0) and advancing into the semibounded domain of the body in question, may be expressed, 
due to the action, in the system of bodies considered, of the circular heat source of arbi- 
trarily specified specific power q0(~) = L-1[q0(s)], in the following form: 

-- -- 1 - - e x p ( - - ~ a ] / ~ )  
qx (s) = qo (s) 1 + k71 - -  exp (--~e]/F) - -  k 71 exp (-- % V~) ' (5) 

where qx (s) -- [ qx (T) exp (-- s~) d~; g (s) = .I q0 (~) exp (-- s~) d~ is the transform of the total specific 
0 

heat flow q0(~), generated by the given heat source of arbitrarily specified (in time) power; 
Be = r0/a~e, ax = r0/r kb -I = be/bx, r0 is the radius of the thin circular heat source; 
ax, bx, ae, be are, respectively, the coefficients of thermal diffusivity and thermal activity 
of the bodies considered (subscript x refers to the body in question and subscript e refers 
to a standard body). 

For the case in which q0(~) = q0 = const, the transform L[q0] = q0/s, and expression 
(5), in accordance with Eq. (I), may be written as follows: 

_ (s [3e'CZ~' f3e 1 )" 
q~ (s___~) _ 1 Lv 1, 1 k b 

qo l + k 7  ~ l + k ~ '  l + k  b 
(6) 

With the help of the known inverse Laplace transform of function (i) we can readily write 
formula (6) in the form 

s ( 2 )  ka-m+' 

qo ~=o .~=o (1 + kb)n+ 1 
erfc nk~/2+m(1--kl/2) 

2 Vgo o  
|~bl/2 bl/2x ] 

--erfc ( n + ~ /  . . . .  + m ( l - - . ~ a  j 
2 ] 

(7) 

1 3 ) V~-  
-- ; ; x ~ = - - e r f x ,  k ~ = a ~ / ~ .  s i n c e  1F1 2 2 2x 

Since  f o r  t h e  t h e r m a l  f lows  q0 (x ) ,  q x ( x ) ,  q e ( z )  we a lways  have t h e  r e l a t i o n  q0(x)  = qx(z )  + 
q e ( x ) ,  we f i n d ,  u s i n g  Eq. ( 7 ) ,  an e x p r e s s i o n  a l s o  f o r  t h e  s p e c i f i c  h e a t  f iow q e ( z ) .  

The t r a n s f o r m  T(0,  0, s)  - (T0 / s )  = AT(s) f o r  t h e  e x c e s s  t e m p e r a t u r e  a t  t h e  c e n t e r  ( r  = 
z = O) of the heating spot for the set of given bodies in thermal contact has, even in the 
case of the arbitrarily timewise-specified specific power q0(~) generated by the circular 
heat source, the form 

AT(s) = b -1 ~(s) [1 - - e x p ( - - a ~  1/7)1 [1 - - e x p ( - -  ~a-I/F)l (8) 
* ~ - ~  1 + k71 - - e x p ( - - ~ e ] / 7 ) - -  k T l e x p ( - - a z ] / 7 )  

All the notation used in Eq. (8) corresponds to that used in formula (5). For the given heat 
source of constant specific power L[q0] = q0/s the transform (8), in accordance with Eq. (i), 
may be written as 

A T ( s ) = ~ ' ( s ) L v  s 1, - -  
c,.,. 13 e, 1 ) ,  

1 kb (9) 
1 + k  b 1 - { -k  b 

where ~(s) = (i/r - exp (-~xVS)]. 
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Using the inverse Laplace transform of the function ~(s) [6], 

1 
~(x) = L-I  [qo ( s ) ] -  [ 1 - -  exp ( - -  axZ/4~ )] 

and formula (4), we obtain the inverse Laplace transform of the transform (9): 

qo [q~(7~)Lv "~--~ ~e' a~, l~e, 1 d~= 
AT ('~) = L- '  tAT (s)] = ~ b I, ] - -  , k ~  

1 + k  b 1 + k b  

(:) n k~-m 2% ] /~-  ~-~ %, ierfc n + m ( k ~ l / 2  - -  1) 
2 -l/F--o e 

n + 1 + m ( k ~ l / 2  - -  I) n -~ ka  1/2 -~ nz(k~ -1/'0 - -  1) + 
- -  ierfc - -  ierfc 

2 ]/F--o e 2 -]/'F-o e 

ierfc n +  1 + kT 1/2 + m (ka 1/2 - -  1) ] + 
2 J 

Thus, the inverse Laplace transform of the class of function transforms of the form (i) 
allows us to reduce the solutions of some analogous nonstationary heat-conduction problems 
to tabular form. 

NOTATION 

Lv(s), designation, assumed by the present authors, of the class of function transforms 
under consideration; Lv(~), designation, assumed by the present authors of the class of func- 
tion inverse transforms; Pi, ki, parameters characterizing the relationship between thermal 
(physical) properties of the model of a system of bodies under consideration and allowing 
for characteristic sizes of inner heat sources; v, parameter characterizing a given change 
of heat flux density; s, parameter of integral Laplace transformation; T, time; ReJs, real 
part of ~; ImP, imaginary part of /-s; R, radius-vector (modulus ~-s); iF1(a; b; x), desig- 
nation of the degenerate hypergeometric function (Kummer function); ~a = ax/ae; k b =, bx/be; 

b x = Ix/~x; b e = le/~ae; thermal conductivities; ax, a e, thermal diffusivities; qe (s) 
(c = x, e, 0), representations of the corresponding heat fluxes (W/m2); bx, be, coefficients 

o f  t h e r m a l  a c t i v i t y  o f  t h e  s e m i s p a c e s  u n d e r  c o n s i d e r a t i o n ; F ( x ) ,  gamma f u n c t i o n ;  erfcx = - - ~  

e x p ( - - t 2 ) d t  s u p p l e m e n t a r y  p r o b a b i l i t y  i n t e g r a l ;  ier[cx = %/~ . erfctdt m u l t i p l e  p r o b a b i l i t y  
X 

i n t e g r a l ;  ( 2 ) ,  b i n o m i a l  c o e f f i c i e n t s ;  Fox  = a x Z / r o  2,  Fo e = a e ~ / r o  2 d i m e n s i o n l e s s  t i m e  
( F o u r i e r  n u m b e r s ) ;  A T ( s ) ,  AT(T) ,  t r a n s f o r m  and i n v e r s e  t r a n s f o r m  o f  e x c e s s  t e m p e r a t u r e  a t  
the center of the heated spot; T0, initial temperature of the system of bodies under con- 
sideration; ~ (s), �9 (~), transform and inverse transform of the occurred function (in the 
text); n, ~, summation indices for a double series; ro, radius of the thin circular heat 

source. 
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